\(\int \frac {x^2}{(a+b x^2) \sqrt {c+d x^2}} \, dx\) [709]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 24, antiderivative size = 82 \[ \int \frac {x^2}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx=-\frac {\sqrt {a} \arctan \left (\frac {\sqrt {b c-a d} x}{\sqrt {a} \sqrt {c+d x^2}}\right )}{b \sqrt {b c-a d}}+\frac {\text {arctanh}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{b \sqrt {d}} \]

[Out]

arctanh(x*d^(1/2)/(d*x^2+c)^(1/2))/b/d^(1/2)-arctan(x*(-a*d+b*c)^(1/2)/a^(1/2)/(d*x^2+c)^(1/2))*a^(1/2)/b/(-a*
d+b*c)^(1/2)

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 82, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {494, 223, 212, 385, 211} \[ \int \frac {x^2}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{b \sqrt {d}}-\frac {\sqrt {a} \arctan \left (\frac {x \sqrt {b c-a d}}{\sqrt {a} \sqrt {c+d x^2}}\right )}{b \sqrt {b c-a d}} \]

[In]

Int[x^2/((a + b*x^2)*Sqrt[c + d*x^2]),x]

[Out]

-((Sqrt[a]*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])])/(b*Sqrt[b*c - a*d])) + ArcTanh[(Sqrt[d]*x)/S
qrt[c + d*x^2]]/(b*Sqrt[d])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 494

Int[(((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_)^(n_))^(q_.))/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Dist[e^n/b, Int[
(e*x)^(m - n)*(c + d*x^n)^q, x], x] - Dist[a*(e^n/b), Int[(e*x)^(m - n)*((c + d*x^n)^q/(a + b*x^n)), x], x] /;
 FreeQ[{a, b, c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LeQ[n, m, 2*n - 1] && IntBinomialQ[a, b
, c, d, e, m, n, -1, q, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {1}{\sqrt {c+d x^2}} \, dx}{b}-\frac {a \int \frac {1}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{b} \\ & = \frac {\text {Subst}\left (\int \frac {1}{1-d x^2} \, dx,x,\frac {x}{\sqrt {c+d x^2}}\right )}{b}-\frac {a \text {Subst}\left (\int \frac {1}{a-(-b c+a d) x^2} \, dx,x,\frac {x}{\sqrt {c+d x^2}}\right )}{b} \\ & = -\frac {\sqrt {a} \tan ^{-1}\left (\frac {\sqrt {b c-a d} x}{\sqrt {a} \sqrt {c+d x^2}}\right )}{b \sqrt {b c-a d}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{b \sqrt {d}} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(342\) vs. \(2(82)=164\).

Time = 1.22 (sec) , antiderivative size = 342, normalized size of antiderivative = 4.17 \[ \int \frac {x^2}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx=\frac {\left (-b c+a d+\sqrt {b} \sqrt {c} \sqrt {b c-a d}\right ) \sqrt {2 b c-a d+2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}} \arctan \left (\frac {\sqrt {2 b c-a d+2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}} x}{\sqrt {a} \left (\sqrt {c}-\sqrt {c+d x^2}\right )}\right )+\sqrt {2 b c-a d-2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}} \left (b c-a d+\sqrt {b} \sqrt {c} \sqrt {b c-a d}\right ) \arctan \left (\frac {\sqrt {2 b c-a d-2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}} x}{\sqrt {a} \left (-\sqrt {c}+\sqrt {c+d x^2}\right )}\right )+2 \sqrt {a} \sqrt {d} (b c-a d) \text {arctanh}\left (\frac {\sqrt {d} x}{-\sqrt {c}+\sqrt {c+d x^2}}\right )}{\sqrt {a} b d (b c-a d)} \]

[In]

Integrate[x^2/((a + b*x^2)*Sqrt[c + d*x^2]),x]

[Out]

((-(b*c) + a*d + Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d])*Sqrt[2*b*c - a*d + 2*Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d]]*ArcTan
[(Sqrt[2*b*c - a*d + 2*Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d]]*x)/(Sqrt[a]*(Sqrt[c] - Sqrt[c + d*x^2]))] + Sqrt[2*b*c
 - a*d - 2*Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d]]*(b*c - a*d + Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d])*ArcTan[(Sqrt[2*b*c -
 a*d - 2*Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d]]*x)/(Sqrt[a]*(-Sqrt[c] + Sqrt[c + d*x^2]))] + 2*Sqrt[a]*Sqrt[d]*(b*c
- a*d)*ArcTanh[(Sqrt[d]*x)/(-Sqrt[c] + Sqrt[c + d*x^2])])/(Sqrt[a]*b*d*(b*c - a*d))

Maple [A] (verified)

Time = 2.95 (sec) , antiderivative size = 84, normalized size of antiderivative = 1.02

method result size
pseudoelliptic \(\frac {-a \,\operatorname {arctanh}\left (\frac {\sqrt {d \,x^{2}+c}\, a}{x \sqrt {\left (a d -b c \right ) a}}\right ) \sqrt {d}+\operatorname {arctanh}\left (\frac {\sqrt {d \,x^{2}+c}}{x \sqrt {d}}\right ) \sqrt {\left (a d -b c \right ) a}}{b \sqrt {d}\, \sqrt {\left (a d -b c \right ) a}}\) \(84\)
default \(\frac {\ln \left (x \sqrt {d}+\sqrt {d \,x^{2}+c}\right )}{b \sqrt {d}}+\frac {a \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x -\frac {\sqrt {-a b}}{b}}\right )}{2 \sqrt {-a b}\, b \sqrt {-\frac {a d -b c}{b}}}-\frac {a \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x +\frac {\sqrt {-a b}}{b}}\right )}{2 \sqrt {-a b}\, b \sqrt {-\frac {a d -b c}{b}}}\) \(337\)

[In]

int(x^2/(b*x^2+a)/(d*x^2+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

(-a*arctanh((d*x^2+c)^(1/2)/x*a/((a*d-b*c)*a)^(1/2))*d^(1/2)+arctanh((d*x^2+c)^(1/2)/x/d^(1/2))*((a*d-b*c)*a)^
(1/2))/b/d^(1/2)/((a*d-b*c)*a)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 616, normalized size of antiderivative = 7.51 \[ \int \frac {x^2}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx=\left [\frac {d \sqrt {-\frac {a}{b c - a d}} \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} - 4 \, {\left ({\left (b^{2} c^{2} - 3 \, a b c d + 2 \, a^{2} d^{2}\right )} x^{3} - {\left (a b c^{2} - a^{2} c d\right )} x\right )} \sqrt {d x^{2} + c} \sqrt {-\frac {a}{b c - a d}}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right ) + 2 \, \sqrt {d} \log \left (-2 \, d x^{2} - 2 \, \sqrt {d x^{2} + c} \sqrt {d} x - c\right )}{4 \, b d}, \frac {d \sqrt {-\frac {a}{b c - a d}} \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} - 4 \, {\left ({\left (b^{2} c^{2} - 3 \, a b c d + 2 \, a^{2} d^{2}\right )} x^{3} - {\left (a b c^{2} - a^{2} c d\right )} x\right )} \sqrt {d x^{2} + c} \sqrt {-\frac {a}{b c - a d}}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right ) - 4 \, \sqrt {-d} \arctan \left (\frac {\sqrt {-d} x}{\sqrt {d x^{2} + c}}\right )}{4 \, b d}, \frac {d \sqrt {\frac {a}{b c - a d}} \arctan \left (-\frac {{\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt {d x^{2} + c} \sqrt {\frac {a}{b c - a d}}}{2 \, {\left (a d x^{3} + a c x\right )}}\right ) + \sqrt {d} \log \left (-2 \, d x^{2} - 2 \, \sqrt {d x^{2} + c} \sqrt {d} x - c\right )}{2 \, b d}, \frac {d \sqrt {\frac {a}{b c - a d}} \arctan \left (-\frac {{\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt {d x^{2} + c} \sqrt {\frac {a}{b c - a d}}}{2 \, {\left (a d x^{3} + a c x\right )}}\right ) - 2 \, \sqrt {-d} \arctan \left (\frac {\sqrt {-d} x}{\sqrt {d x^{2} + c}}\right )}{2 \, b d}\right ] \]

[In]

integrate(x^2/(b*x^2+a)/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(d*sqrt(-a/(b*c - a*d))*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*
x^2 - 4*((b^2*c^2 - 3*a*b*c*d + 2*a^2*d^2)*x^3 - (a*b*c^2 - a^2*c*d)*x)*sqrt(d*x^2 + c)*sqrt(-a/(b*c - a*d)))/
(b^2*x^4 + 2*a*b*x^2 + a^2)) + 2*sqrt(d)*log(-2*d*x^2 - 2*sqrt(d*x^2 + c)*sqrt(d)*x - c))/(b*d), 1/4*(d*sqrt(-
a/(b*c - a*d))*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^2 - 4*((b^2*
c^2 - 3*a*b*c*d + 2*a^2*d^2)*x^3 - (a*b*c^2 - a^2*c*d)*x)*sqrt(d*x^2 + c)*sqrt(-a/(b*c - a*d)))/(b^2*x^4 + 2*a
*b*x^2 + a^2)) - 4*sqrt(-d)*arctan(sqrt(-d)*x/sqrt(d*x^2 + c)))/(b*d), 1/2*(d*sqrt(a/(b*c - a*d))*arctan(-1/2*
((b*c - 2*a*d)*x^2 - a*c)*sqrt(d*x^2 + c)*sqrt(a/(b*c - a*d))/(a*d*x^3 + a*c*x)) + sqrt(d)*log(-2*d*x^2 - 2*sq
rt(d*x^2 + c)*sqrt(d)*x - c))/(b*d), 1/2*(d*sqrt(a/(b*c - a*d))*arctan(-1/2*((b*c - 2*a*d)*x^2 - a*c)*sqrt(d*x
^2 + c)*sqrt(a/(b*c - a*d))/(a*d*x^3 + a*c*x)) - 2*sqrt(-d)*arctan(sqrt(-d)*x/sqrt(d*x^2 + c)))/(b*d)]

Sympy [F]

\[ \int \frac {x^2}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx=\int \frac {x^{2}}{\left (a + b x^{2}\right ) \sqrt {c + d x^{2}}}\, dx \]

[In]

integrate(x**2/(b*x**2+a)/(d*x**2+c)**(1/2),x)

[Out]

Integral(x**2/((a + b*x**2)*sqrt(c + d*x**2)), x)

Maxima [F]

\[ \int \frac {x^2}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx=\int { \frac {x^{2}}{{\left (b x^{2} + a\right )} \sqrt {d x^{2} + c}} \,d x } \]

[In]

integrate(x^2/(b*x^2+a)/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^2/((b*x^2 + a)*sqrt(d*x^2 + c)), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {x^2}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(x^2/(b*x^2+a)/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:index.cc index_m i_lex_is_greater Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx=\int \frac {x^2}{\left (b\,x^2+a\right )\,\sqrt {d\,x^2+c}} \,d x \]

[In]

int(x^2/((a + b*x^2)*(c + d*x^2)^(1/2)),x)

[Out]

int(x^2/((a + b*x^2)*(c + d*x^2)^(1/2)), x)